
	

	

Keshif: Out-of-the-Box Visual and Interactive
Data Exploration Environment

Mehmet Adil Yalçın§, Niklas Elmqvist°, and Benjamin B. Bederson†
University of Maryland, College Park

	
ABSTRACT
Keshif is an open-source, web-based data exploration environ-
ment that enables data analytics novices to create effective visual
and interactive dashboards and explore relations with minimal
learning time, and data analytics experts to explore tabular data in
multiple perspectives rapidly with minimal setup time. In this
paper, we present a high-level overview of the exploratory fea-
tures and design characteristics of Keshif, as well as its API and a
selection of its implementation specifics. We conclude with a
discussion of its use as an open-source project.

Keywords: Interactive data exploration, data visualization, data
exploration, interaction, design, user-centered design.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical User Interfaces (GUI).

1 GOALS AND BACKGROUND
Creating effective data interfaces requires significant skills in
visualization, interaction, and interface design, as well training
and time to plan and execute actions that implement good strate-
gies. Highly flexible and configurable tools, such as Tableau or
Lyra [1] provide a vast design space that can be hard to learn,
navigate, and use effectively. We built Keshif ‡ (www.keshif.me)
as a data exploration space designed from ground-up to automati-
cally convert data to an effective visual interface that can be inter-
actively explored to reveal overviews, trends, and relations within
a tabular dataset. Using Keshif, analytics and design novices ben-
efit from the best practices with easy learning on its minimal and
familiar basis. On the other hand, experts benefit from its rapid
interaction, expressive alternative modes for visualizations and
selections, and minimal setup time to bootstrap their data analysis,
as well as its flexibility based on standards of the web (JavaScript,
HTML, CSS) to transform data and customize styling.

Keshif is open-sourced at github.com/adilyalcin/keshif with
BSD 3-clause license, first released on late 2013. By continuous
improvements in its design and features, by its application to 160+
datasets across different domains, and through comparisons to
existing practices and research, Keshif has grown to embody the
best practices. It also has become a robust platform to explore new
visualization techniques, such as AggreSet [3] which focuses on
set-typed (multi-value categorical) data exploration.

2 EXPLORATORY FEATURES OF KESHIF
Keshif is designed to enable exploration of tabular datasets (rec-
ords with a range of attributes). A Keshif data browser (Figure 1)
converts selected attributes into visual summaries, where records

are grouped into aggregates. Characteristics of these aggregates
(such as count, total, average) are measured and visualized (Fig-
ure 3). Each data type has a specialized visualization design (Fig-
ure 4), extending upon the best practices to achieve perceptual
effectiveness. Two visual scale modes support alternative analy-
sis: measurements can be shown in either absolute or part-of mode
(Figure 2). Each record can also be displayed individually, either
as a sorted list, as a network (using an explicit link attribute), or as
a map (using a unique geo-region attribute). As a result, the user is
freed from data encoding decisions, and can focus on making
queries, and observing trends and relations with minimal training.

The interactions in Keshif are designed to achieve seamless and
automatic synchronization across summaries and the record dis-
play. To increase expressiveness in exploration, Keshif enables
selection for filtering (by mouse-click), highlighting (by
mouse-over), and comparison (by locking) of record groups,
(Figure 1). Upon interaction, visualizations are refreshed with
appropriate animations to guide through the flow of changes.

Keshif browser can be authored and configured using its graph-
ical interface by drag-and-drop (Figure 5), or its API (Section 4).
Authoring and exploration workflow is demonstrated by a 5-
minute video. By defining a separate authoring mode (which al-
lows adding/removing summaries, formulating custom attributes,
and adjusting layout), Keshif achieves minimalism and efficiency
for its primary use case: exploring the data features rapidly.

3 DESIGN APPROACH OF KESHIF
The design of our tools is critical as it influences the paths taken
in exploration, and effectively the outcomes. We designed Keshif
to declutter the human-facing data search space by reducing con-
figurations and improving out-of-the-box design for usability and
learnability while maintaining high expressiveness. As John
Maeda notes, “design is both the insanely radical, and the pas-
sionately incremental”. Our radical approach is our strong empha-
sis in designing a minimalist data exploration space that avoids
ineffective paths, enables explicit overview-to-detail flow,
achieves high consistency in visual and interaction design, avoids
multiple visual representations of a single data item, and prefers
tight integration and efficiency over modularity. Our incremental
approach is our extensions on the exploratory design space, such
as compare-selection by locking, expressive visual scale modes,
and synchronization from pointed records to aggregates as well as
from aggregates to individual records and other summaries.

4 API FOR KESHIF BROWSER CONFIGURATION
Keshif, including its API, is designed to let the user define what is
being visualized and explored, not how. This is in contrast to vis-
ualization grammars such as Vega Lite [2] and ggplot, which have
a compositional approach to create a range of chart designs. It also
contrasts with chart templating approaches such Excel, Raw,
Datamatic, and Quadrigram, since Keshif automates the visualiza-
tions and interaction, and the data dialogue is driven by the user
based on key exploratory tasks rather than selecting charts and

§adil@keshif.me , °elm@umd.edu , †bederson@umd.edu
‡ Keshif (keşif) means exploration and discovery in Turkish.

Proc. of IEEE VIS 2016 Workshop on Visualization in Practice:
Open Source Visualization and Visual Analytics Software. Copy-
right retained by the authors.

http://www.tableau.com
http://idl.cs.washington.edu/projects/lyra
http://www.keshif.me
http://www.github.com/adilyalcin/keshif
http://keshif.me/AggreSet
https://creativeleadership.wordpress.com/2016/06/30/design-is-both-the-insanely-radical-and-the-passionately-incremental/
https://vega.github.io/vega-lite/
http://ggplot2.org/
http://raw.densitydesign.org/
http://datamatic.co/
http://www.quadrigram.com/

	

	

mapping data to template parameters. Keshif customizations are
commonly aimed to express metadata, such as ordinal categories
and unit names of numeric attributes, as well as basic data trans-
formations such as parsing time components from a text field, and
splitting a text field into multiple categories by a delimiter. We
created the API for Keshif browsers to concisely support the
common needs we identified on 150+ public datasets.

The JavaScript API of Keshif (Code 1) enables concise, flexi-
ble, customizable, and persistent configuration of data browsers.
Its single entry-point is instantiation of a kshf.Browser object
with a browser configuration, which describes the data source, the
list of summaries (position, name, function, and other configura-
tions such as sorting of categorical data or unit name for integer
values), and the record display (including sorting options, record
view, etc). Multiple browsers can be added to a single web-page
by instantiating multiple kshf.Browsers (see VisTools). Code
1 demonstrates functional customizations for key objectives
including loading custom data (such as GeoJSON of a country, an
XML file, or even BibTeX entries for literature surveys), describ-
ing a data feature to summarize (such as extracting months from a
Date attribute), and describing HTML components of how a com-
ponent should be rendered (such as merging multiple attributes,
with custom styling). While the visual and interaction design is
tightly controlled and not aimed to be end-user configurable, these
callbacks provide key flexibility so that Keshif can fit many data
sources, domains, and settings. In addition, Keshif browser con-
figuration can be serialized to/from JSON objects. To handle cus-
tom callback functions in a configuration, we convert these func-
tions to strings on export, and evaluate functions as string defini-
tions using JavaScript eval on configuration load. The full end-
user API documentation is at github.com/adilyalcin/Keshif/wiki.

To save, host, load, and edit browser configurations easily as
JSON objects, we implemented a GitHub Gist-based storage and
authentication. Gist configuration are stored and loaded using
unique IDs (for example, keshif.me/gist/?82d0d3caed8e93ea5ff8
loads the configuration at gist.github.com/82d0d3caed8e93ea5ff8.
This allows easy version-control and forking of browser configu-
rations. Our Gist integration also can manage custom CSS style
files along with browser configuration.

5 IMPLEMENTATION NOTES
Keshif is implemeted as a cross-platform tool based on modern
web standards of JavaScript, HTML and CSS. As a strictly client-
side tool, Keshif is a lightweight system that does not require a
server installation or maintenance. Datasets can be loaded from
cloud services that host spreadsheets (such as Google Sheets) or
documents (such as CSV or JSON files on Google Drive or Drop-
box), in addition to files hosted at a local server, or uploaded from
local computer (non-persistent). Essentially, a Keshif browser can
be built on any data resource that a web browser can access, and
Keshif does not control data authentication and security protocols
of the data sources. Keshif’s client-side basis puts a practical limit
on the data volume that can be loaded into the browser’s memory,
while it may support up to 220k+ records (See NYC bike-trips).

Our implementation emphasizes a lean, minimalist approach as
well. To keep our development stack minimal and have full con-
trol the interface design, we opted not to use frameworks such as
React and Angular, or even jQuery. The only core dependency of
the current Keshif implementation is D3, which is used to bind
custom data structures to page components, create visualizations,
and update these components interactively. We implemented cus-
tom internal aggregated and cached computations, since Keshif
support query models not supported by off-the-shelf tools like

Crossfilter. The JavaScript code is developed and maintained
under a single file, keshif.js. Keshif also uses Leaflet to render
interactive maps, and PapaParse to parse CSV files. Keshif
browser styling is implemented using less, a CSS preprocessor,
which simplifies hierarchical styling and cross-browser compati-
bility. Our current unminified JavaScript implementation is over
11kLOC (460KB), and stylesheet is over 4kLOC (138KB). Keshif
also uses FontAwesome, which provides a clean, consistent, and
familiar icon design for actions and objects in its interface. We
implemented most animations using CSS3 transitions instead of
using d3.transition(), making it more concise, simpler to develop
and maintain. We used CSS flexbox display model to implement
flexible and responsive layout components. Since rendering rec-
ords individually can degrade performance given large datases,
we implemented an infinite scrolling strategy, creating page DOM
elements conservatively and dynamically on scroll and filter.

6 USE OF KESHIF
We created Keshif data browsers for 160+ public datasets across
many domains, including, but not limited to, journalism, open
government, surveys, health, and arts. www.keshif.me and its
various demos have been visited more than 100k times in the last
year. keshif.me/demo/VisTools stands as the most visited and
shared among our demos, giving a multi-faceted overview of
400+ visualization tools and 80 visualization books. At the time of
this submission, Keshif GitHub repository has been ★starred 400+
times, and forked 100+ times. While the project is open source
and we are open to code contributions, we have not yet received
contributions from third parties, although we have received ques-
tions and comments on our issues page, our mailing list, or
through personal communications. This may be due to our inte-
grated design and implementation that does not prioritize modu-
larity, customization, or extensive documentation of internal im-
plementation. Project updates can be followed on social media at
twitter.com/keshifme and facebook.com/keshifme.

7 CONCLUSION
We presented Keshif, a new out-of-the-box data exploration envi-
ronment that automates the visual and interactive design to enable
rapid and flexible tabular data exploration. Our main motivation is
to improve the exploration space for data-driven insights by prun-
ing complexities and ineffective choices. We briefly introduced
the API for Keshif browser configurations, as well as some of our
implementation strategies and components. We are looking for-
ward to extending supported data types, graphical authoring capa-
bilities, and making the design of Keshif easier to learn, while
extending the application of Keshif to new domains and datasets.

REFERENCES
[1] A. Satyanarayan and J. Heer, “Lyra: An Interactive Visuali-

zation Design Environment,” Computer Graphics Forum,
vol. 33, no. 3, pp. 351–360, Jun. 2014.

[2] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J.
Heer, “Vega-Lite: A Grammar of Interactive Graphics,”
IEEE Transactions on Visualization and Computer
Graphics, vol. PP, no. 99, pp. 1–1, 2016.

[3] M. A. Yalçın, N. Elmqvist, and B. B. Bederson, “AggreSet:
Rich and Scalable Set Exploration using Visualizations of
Element Aggregations,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 1, pp. 688–697, Jan.
2016.

https://github.com/adilyalcin/Keshif/blob/master/demo/VisTools.html
http://github.com/adilyalcin/Keshif/wiki
https://gist.github.com
http://keshif.me/gist/?82d0d3caed8e93ea5ff8
https://gist.github.com/82d0d3caed8e93ea5ff8
http://keshif.me/demo/nycbiketrips
https://facebook.github.io/react/
https://angularjs.org/
https://jquery.com/
http://d3js.org
http://square.github.io/crossfilter/
https://github.com/adilyalcin/Keshif/blob/master/keshif.js
http://leafletjs.com/
http://www.papaparse.com
http://lesscss.org/
http://FontAwesome.io
http://www.keshif.me
http://keshif.me/demo/VisTools
http://www.github.com/adilyalcin/Keshif/issues
http://www.twitter.com/keshifme
http://www.facebook.com/keshifme

	

	

	
	
	
	 	

	
Figure 1. A screenshot from a Keshif browser that visualizes all 30,057 fatal traffic accidents in the United States that happened in 2013. The
visualization scale mode is set to show part-of-whole relations. Black colors in the visualization show the locked (compared) selection of
accidents that happened on Local Street routes, while orange colors show the highlighted selections of State Highway accidents. This
status is displayed as a bread-crumb pattern on top of the browser. All summaries use the same visual mode and language. This example is
taken from www.keshif.me/demo/FatalTrafficAccidents2013.

a) Absolute mode: Measurements are shown in absolute values.

b) Part-of mode: Measurements are shown in percentages of the total (or filtered) values. The part-of mode is only valid (and applicable) for

count or sum measure functions.

Figure 2. Alternative visual scale modes for aggregations, using an example from BirdFlights dataset.
This example is taken from www.keshif.me/demo/BirdStrikes.

http://www.keshif.me/demo/FatalTrafficAccidents2013
http://www.keshif.me/demo/BirdStrikes

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

a) Each aggregate shows the number of companies.

This is the default mode as it provides a familiar and basic overview of the data distribution.

b) Each aggregate shows the total number of workers.

Example: There are 92k workers in companies in health industry.

c) Each aggregate shows the average growth per each aggregation.

Example: Energy sector is the second highest-average-growth industry, with 970% growth in average across all energy industry companies.

Figure 3. Alternative measurement functions for aggregations, using an example from Companies dataset (from www.inc.com)
This example is taken from www.keshif.me/demo/inc5000.

http://www.inc.com
http://www.keshif.me/demo/inc5000

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

Categorical data → Vertical histogram Numeric Data → Horizontal histogram and percentile chart

Time data (timestamp) → Line chart Set-typed data (set relations) → Set matrix chart [3]

Spatial Region data → Maps (aggregated or per record) Network data (explicit links between records) → Node-link diagram

Figure 4. A selection of the visualizations integrated into Keshif from various datasets.

	

	

	

	
	

	

	
	

a) The attribute is dragged from Available Summaries panel to under the record display .

b) The 0-20 mile range is higlighted in the summary, with distributions reflecting on all summaries and the record display.

Records are also sorted by distance to shore, and the unit (mile) is automatically applied to all representations of this attribute.

Figure 5. A new summary (Distance to Shore) is added to the data browser in the authoring mode.
This example is taken from www.keshif.me/demo/oilspills.

http://www.keshif.me/demo/oilspills

	

	

	

	
Code 1. Keshif configuration for an avalanche accidents dataset.

A screenshot of the corresponding Keshif browser defined by the Keshif configuration above.

This browser can be accessed at keshif.me/demo/AvalancheAccidents.
The full source of the web-page is available at github.com/adilyalcin/Keshif/blob/master/demo/AvalancheAccidents.html

http://keshif.me/demo/AvalancheAccidents
https://github.com/adilyalcin/Keshif/blob/master/demo/AvalancheAccidents.html

	H.5.2

